38 resultados para Ribosomal-rna Gene

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh) gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ). Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have reexamined the role of yeast RNase III (Rnt1p) in ribosome synthesis. Analysis of pre-rRNA processing in a strain carrying a complete deletion of the RNT1 gene demonstrated that the absence of Rnt1p does not block cleavage at site A0 in the 5' external transcribed spacers (ETS), although the early pre-rRNA cleavages at sites A0, A1, and A2 are kinetically delayed. In contrast, cleavage in the 3' ETS is completely inhibited in the absence of Rnt1p, leading to the synthesis of a reduced level of a 3' extended form of the 25S rRNA. The 3' extended forms of the pre-rRNAs are consistent with the major termination at site T2 (+210). We conclude that Rnt1p is required for cleavage in the 3' ETS but not for cleavage at site A0. The sites of in vivo cleavage in the 3' ETS were mapped by primer extension. Two sites of Rnt1p-dependent cleavage were identified that lie on opposite sides of a predicted stem loop structure, at +14 and +49. These are in good agreement with the consensus Rnt1p cleavage site. Processing of the 3' end of the mature 25S rRNA sequence in wild-type cells was found to occur concomitantly with processing of the 5' end of the 5.8S rRNA, supporting previous proposals that processing in ITS1 and the 3' ETS is coupled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete mitochondrial DNA of the blacklip abalone Haliotis rubra (Gastropoda: Mollusca) was cloned and 16,907 base pairs were sequenced. The sequence represents an estimated 99.85% of the mitochondrial genome, and contains 2 ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes found in other metazoan mtDNA. An AT tandem repeat and a possible C-rich domain within the putative control region could not be fully sequenced. The H. rubra mtDNA gene order is novel for mollusks, separated from the black chiton Katharina tunicata by the individual translocations of 3 tRNAs. Compared with other mtDNA regions, sequences from the ATP8, NAD2, NAD4L, NAD6, and 12S rRNA genes, as well as the control region, are the most variable among representatives from Mollusca, Arthropoda, and Rhynchonelliformea, with similar mtDNA arrangements to H. rubra. These sequences are being evaluated as genetic markers within commercially important Haliotis species, and some applications and considerations for their use are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent phylogenetic analyses of Albugo candida using the mitochondrial cytochrome c oxidase subunit II (cox2) gene, the nuclear ribosomal RNA large subunit (LSU) gene and the nuclear ribosomal RNA internal transcribed spacer (ITS) gene region have revealed significant genetic variation and led to the description of new species in the A. candida complex. This study examined the genetic diversity within Australian collections of A. candida from various Brassicaceae species in a range of geographic locations. Phylogenetic analysis of 31 Australian A. candida collections from 11 hosts using the rDNA ITS region, rDNA LSU region and cox2 mtDNA showed that the majority of Australian A. candida collections were the common form of A. candida. One collection from a common weed host, hairy bitter cress (Cardamine hirsuta), was found to belong to a previously reported but undescribed species, while three collections, also from C. hirsuta, were found to belong to a new undescribed species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This review describes the nature and applications of ribosome inactivating proteins (RIPs) from Momordica charantia (bitter melon). RIPs from the plant kingdom have received much attention in biomedical research because they target conserved host protein synthesis machinery and show specificity towards human and animal cell targets. Recent studies aimed at unravelling the enzymatic activities of the M charantia RIPs provide a structural basis for their activities. It has been reported that RIPs are member of the single chain ribosome inactivating protein (SCRIP) family which act irreversibly on ribosome by removing adenine residue from eukaryotic ribosomal RNA. Various activities of RIPs include anti-tumor, broad anti-viral, ribonuclease and deoxyribonuclease. MAP30 (Momordica Anti-HIV Protein), alpha- and beta-momorcharins inhibit HIV replication in acutely and chronically infected cells and thus are considered potential therapeutic agent in HIV infection and AIDS. Further, MAP30 improved the efficacy of anti-HIV therapy when used in combination with other anti-viral drugs. MAP30 holds therapeutic promise over other RIPs because not only it is active against infection and replication of both HSV and HIV but is non toxic to normal cells. Here we review the nature, action, structure function relationship and applications of RIPs from Momordica charantia and evaluate their potential for anti-cancer and anti-viral therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacteria from the genus Mycoplasma are common inhabitants of the respiratory, gastrointestinal, and genital tracts of mammals. The understanding of the pathological significance of mycoplasmas in seals is poor, as few studies have utilized the specific culture techniques required to isolate these bacteria. The current study surveyed for the Mycoplasma species present in Australian fur seals (Arctocephalus pusillus doriferus) and investigated the association between infection and pathology. Mycoplasmas were found in the nasal cavities of 55/80 (69%) of apparently healthy individuals. Isolates from 18 individuals were investigated through 16S ribosomal RNA sequencing, and 3 species were identified: M. zalophi, M. phocae, and Mycoplasma sp. (GenBank no. EU714238.1), all of which had previously been isolated from Northern Hemisphere pinnipeds. In addition, mycoplasmas were isolated from the lungs of 4 out of 16 juveniles and 1 out of 5 adults sampled at necropsy. Isolates obtained were M. zalophi, Mycoplasma sp. EU714238.1, and M. phocicerebrale, but infection was not associated with lung pathology in these age classes. Inflammatory disease processes of the heart and/or lungs were present in 12 out of 32 (38%) aborted fetuses on microscopic examination. Predominant findings were interstitial pneumonia, pericarditis, and myocarditis. Mycoplasma phocicerebrale was isolated from the thymus of an aborted fetus, and 3 out of 11 (27%) fetuses with inflammatory heart or lung lesions were PCR-positive for Mycoplasma. In conclusion, several species of Mycoplasma are part of the normal flora of the nasal cavity of Australian fur seals, and some mycoplasmas may be associated with abortion in this species of seal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity, which depurinate large ribosomal RNA and arrest protein synthesis. RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins, isolated from plants, are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV) and herpes simplex virus (HSV). Most of the research work related to RIPs has been focused on antiviral activity against HIV; however, the exact mechanism of antiviral activity is still not clear. The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome, leading to inhibition of viral protein translation and host cell death. Enzymatic activity of RIPs is not limited to depurination of the large rRNA, in addition they can depurinate viral DNA as well as RNA. Recently, Phase I/II clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease. The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ribosome-inactivating proteins (RIPs) are mainly present in plants and function to inhibit protein synthesis through the removal of adenine residues from eukaryotic ribosomal RNA (rRNA). They are broadly classified into two groups: type I and type II. Type I RIPs are a diverse family of proteins comprising a single polypeptide chain, whereas type II RIPs are heterodimeric glycoproteins comprising an A-chain (functionally equivalent to a type I RIP) linked via a disulphide bond to a B chain, mediating cell entry. In this review, we describe common type I and type II RIPs, their diverse biological functions, mechanism of cell entry, stability in plasma and antigenicity. We end with a discussion of promising applications for RIPs in biomedicine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio-economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host-pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RNA interference (RNAi) is a specific and powerful tool used to manipulate gene expression and study gene function. The cytochrome P450 3A4 (CYP3A4) can metabolize more than 50% of drugs. In the present study, we investigated whether vector-expressed small interfering RNAs (siRNAs) altered the CYP3A4 expression and function using the Chinese hamster cell line (V79) overexpressing CYP3A4 (CHL-3A4). Three different siRNA oligonucleotides (3A4I, 3A4II, and 3A4III) were designed and tested for their ability to interfere with CYP3A4 gene expression. Our study demonstrated that transient transfection of CHL-3A4 cells with the 3A4III siRNAs, but not 3A4I and II, significantly reduced CYP3A4 mRNA levels by 65% and protein expression levels by 75%. All these siRNAs did not affect the expression of CYP3A5 at both mRNA and protein levels in V79 cells overexpressing CYP3A5. Transfection of CHL-3A4 cells with 3A4III siRNAs significantly diminished the cytotoxicity of two CYP3A4 substrate drugs, cyclophosphamide and ifosfamide, in CHL-3A4 cells, with the IC50 increased from 55 to 210 µM to >1000 µM. Nifedipine at 5.78, 14.44, and 28.88 µM was significantly (P < 0.01) depleted by approximately 100, 40, and 22%, respectively, in S9 fractions from CHL-3A4 cells compared with parental CHL-pIC19h cells. In addition, transfection of the CHL-3A4 cells with vectors expressing the 3A4III siRNAs almost completely inhibited CYP3A4-mediated nifedipine metabolism. This study demonstrated, for the first time, the specific suppression of CYP3A4 expression and function using vector-based RNAi technique. The use of RNAi is a promising tool for the study of cytochrome P450 family function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the development of a microfluidic methodology, using RNA extraction and reverse transcription PCR, for investigating expression levels of cytochrome P450 genes. Cytochrome P450 enzymes are involved in the metabolism of xenobiotics, including many commonly prescribed drugs, therefore information on their expression is useful in both pharmaceutical and clinical settings. RNA extraction, from rat liver tissue or primary rat hepatocytes, was performed using a silica-based solid-phase extraction technique. Following elution of the purified RNA, amplification of target sequences for the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the cytochrome P450 gene CYP1A2, was carried out using a one-step reverse transcription PCR. Once the microfluidic methodology had been optimized, analysis of control and 3-methylcholanthrene-induced primary rat hepatocytes were used to evaluate the system. As expected, GAPDH was consistently expressed, whereas CYP1A2 levels were found to be raised in the drug-treated samples. The proposed system offers an initial platform for development of both rapid throughput analyzers for pharmaceutical drug screening and point-of-care diagnostic tests to aid provision of drug regimens, which can be tailor-made to the individual patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study examined the gene expression and cellular localization of the creatine transporter (CreaT) protein in rat skeletal muscle. Soleus (SOL) and red (RG) and white gastrocnemius (WG) muscles were analyzed for CreaT mRNA, CreaT protein, and total creatine (TCr) content. Cellular location of the CreaT protein was visualized with immunohistochemical analysis of muscle cross sections. TCr was higher (P <= 0.05) in WG than in both RG and SOL, and was higher in RG than in SOL. Total CreaT protein content was greater (P <= 0.05) in SOL and RG than in WG. Two bands (55 and 70 kDa) of the CreaT protein were found in all muscle types. Both the 55-kDa (CreaT-55) and the 70-kDa (CreaT-70) bands were present in greater (P <= 0.05) amounts in SOL and RG than in WG. SOL and RG had a greater amount (P <= 0.05) of CreaT-55 than CreaT-70. Immunohistochemical analysis revealed that the CreaT was mainly associated with the sarcolemmal membrane in all muscle types. CreaT mRNA expression per microgram of total RNA was similar across the three muscle types. These data indicate that rat SOL and RG have an enhanced potential to transport Cr compared with WG, despite a higher TCr in the latter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA-based approaches to the discovery of genes contributing to the development of type 2 diabetes have not been very successful despite substantial investments of time and money. The multiple gene-gene and gene-environment interactions that influence the development of type 2 diabetes mean that DNA approaches are not the ideal tool for defining the etiology of this complex disease. Gene expression-based technologies may prove to be a more rewarding strategy to identify diabetes candidate genes. There are a number of RNA-based technologies available to identify genes that are differentially expressed in various tissues in type 2 diabetes. These include differential display polymerase chain reaction (ddPCR), suppression subtractive hybridization (SSH), and cDNA microarrays. The power of new technologies to detect differential gene expression is ideally suited to studies utilizing appropriate animal models of human disease. We have shown that the gene expression approach, in combination with an excellent animal model such as the Israeli sand rat (Psammomys obesus), can provide novel genes and pathways that may be important in the disease process and provide novel therapeutic approaches. This paper will describe a new gene discovery, beacon, a novel gene linked with energy intake. As the functional characterization of novel genes discovered in our laboratory using this approach continues, it is anticipated that we will soon be able to compile a definitive list of genes that are important in the development of obesity and type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New treatments are currently required for the common metabolic diseases obesity and type 2 diabetes. The identification of physiological and  biochemical factors that underlie the metabolic disturbances observed in obesity and type 2 diabetes is a key step in developing better therapeutic outcomes. The discovery of new genes and pathways involved in the  pathogenesis of these diseases is critical to this process, however  identification of genes that contribute to the risk of developing these diseases represents a significant challenge as obesity and type 2 diabetes are complex diseases with many genetic and environmental causes. A number of diverse approaches have been used to discover and validate potential new targets for obesity and diabetes. To date, DNA-based approaches using candidate gene and genome-wide linkage analysis have had limited success in identifying genomic regions or genes involved in the development of these diseases. Recent advances in the ability to evaluate linkage analysis data from large family pedigrees using variance components based linkage analysis show great promise in robustly identifying genomic regions associated with the development of obesity and diabetes. RNA-based technologies such as cDNA microarrays have identified many genes differentially expressed in tissues of healthy and diseased subjects. Using a combined approach, we are endeavouring to focus attention on differentially expressed genes located in chromosomal regions previously linked with obesity and / or diabetes. Using this strategy, we have identified Beacon as a potential new target for obesity and diabetes.